Determination of Frictional Speeds by Arm Movement and Simulation of Frictional Sounds of Fabrics

Chunjeong Kim¹, Yoonjung Yang², Jangwoon Park³, Heecheon You³, and Gilsoo Cho⁴

¹Department of Industrial and Management Engineering, Pohang University of Science and Technology, 790-784, Korea
²Department of Clothing and Textiles, Yonsei University, Seoul 120-749, Korea
³Department of Clothing and Textiles, Yonsei University, Seoul 120-749, Korea
⁴Department of Industrial and Management Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea

Abstract: This study identified the frictional speeds between the arm and trunk of a wearer in three different conditions: walking, jogging, and running. To analyze its acoustic properties, we simulated the frictional sounds of fabrics in conditions similar to real life. By analyzing shoulder angles in captured motion pictures, it was identified that the friction between the arm and trunk occurs within 10° of the shoulder angle along the center line of the trunk and the speed of the elbow reached the maximum within the friction range of shoulder angle. The average frictional speeds within 10° were found to be 0.62 m/s at walking, 0.95 m/s at jogging, and 1.78 m/s at running. The frictional sounds of two nylon coated fabrics were generated by these speeds. The noises were simulated based on the frictional speeds and times under three conditions. We calculated sound characteristics such as the sound pressure levels (SPL) and Zwicker’s psychoacoustic parameter. The SPL values ranged from 85 dB at running to 88 dB at jogging. The values of loudness(Z) at walking and jogging were higher than that at running, but the fluctuation strength(Z) was increased by walking, jogging, and running, in that order. These results mean that the frictional sounds of fabrics at walking and jogging are noisier and less fluctuating than those at running.

EXPERIMENTAL

Motion Analysis for Frictional Speeds of fabrics
- Upper-limb motions in walking(1.3m/s), jogging(2.5m/s), and running(4.5m/s) on a treadmill were captured by a motion analysis system (Falcon240, Santa Rosa).
- To analyze the angle of the shoulder and the speed of the elbow, four markers were attached to the shoulder, elbow, wrist, and pelvis.
- Participants were two males and two females (25 ~ 28 years)

Specimens
- Two nylon coated fabrics available for a sportswear were selected for specimens as shown in table 1.

Table 1. Characteristics of specimens

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Fiber content</th>
<th>Finishing</th>
<th>Yarn Type (weaveway)</th>
<th>Density (g/m²)</th>
<th>Weave Thickness (mm)</th>
<th>Weight (g/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>Nylon 100%</td>
<td>Direct Dry Coating</td>
<td>Filament/ATY¹</td>
<td>168 x 53</td>
<td>Plain</td>
<td>1.23</td>
</tr>
<tr>
<td>N2</td>
<td>Nylon 100%</td>
<td>Direct Dry Coating</td>
<td>Filament/ATY¹</td>
<td>168 x 53</td>
<td>Plain</td>
<td>1.29</td>
</tr>
</tbody>
</table>

Recording and Analyzing Frictional Sounds of Fabrics
- Frictional sounds were generated by Measuring Apparatus for Fabric Noise (MAFN) and they were recorded by Pulse System (Type-7700, B&K)
- The sound spectra were analyzed by the fast Fourier transform (FFT) at frequencies ranging 0-17,350 Hz.
- Using the Sound Quality System (Type 7698, B&K), we calculated the Sound Pressure Level (SPL) and Zwicker’s psychoacoustic parameters.

RESULTS AND DISCUSSION

Determination of Frictional Speed according to Various Movements
- The friction between the arm and trunk was identified to occur within 10° of the shoulder angle along the center line of the trunk, and the speed of elbow reached maximum within the friction range of the shoulder angle (Fig. 1).
- The average frictional speeds between the arm and trunk at the elbow were found to be 0.62 m/s at walking, 0.95 m/s at jogging, and 1.78 m/s at running.

Simulation of Fabric Sound by Frictional Speed
- Frictional sounds were simulated according to the frictional times by measuring the real wearer’s movement (Table 2)

Table 2. Frictional times by motion analysis

<table>
<thead>
<tr>
<th>Weaver’s activities</th>
<th>-10° ~ +10°</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (second)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>From front to back</td>
<td>0.09</td>
<td>0.26</td>
</tr>
<tr>
<td>From back to front</td>
<td>0.17</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Effects of Sound Characteristics at movement types
- The SPL value of the simulated fabric sounds at running weakened than those at walking and jogging (Fig. 5) because of fast frictional speed and short frictional time
- The values of loudness(Z) at walking and jogging were higher than that at running (Fig. 6(a)).
- The values of sharpness(Z), roughness(Z), and fluctuation strength(Z) were about 1 acum, 5 asper, and 4 vacil, respectively (Fig. 6).

CONCLUSIONS
In this study, we developed a method of determining the frictional speeds between the arm and the trunk according to the wearer’s activities in walking, jogging, and running through a motion analysis. We also analyzed the acoustic properties of frictional sounds by simulating the real frictional sound. The exact frictional speeds identified according to the wearer’s activity and the sounds of our clothing identified in this study may be very useful in investigating the subjective sensation or analyzing acoustic properties of clothing noise.

* This work was supported by the Korea Science and Engineering Foundation.

Yonsei University

AEI, July 14-17, 2008, Las Vegas, NV, U.S.A.