Development of a Generation Method of Digital Human Models with Various Sizes

Ergonomic Design Technology Lab

Heecheon You, Ph.D.

T. Ryu, I. Jung, and K. Kim

Department of Industrial Engineering Pohang University of Science & Technology

Agenda

- **C** Ergonomic Design with Digital Human Models
- Objectives of the Study
- Generation Method of Digital Human Models
- □ Web-Based Human Model Generation System
- Discussion

Ergonomic Design with Digital Human Models

JACKTM

RAMSISTM

SAFEWORKTM

- Benefits
 - Concurrent design, evaluation, and revision
 - Efficient prototyping and visualized
- □ Key Ergonomic Issues

Human Model Generation Methods

- Develop a method to generate a group of human models in various sizes which statistically represents the target population.
 - Develop a generation system of human models in a fast and easy manner.

Generation Procedure of Human Models

S1: Generation of Pairs of Stature and Weight

Generated Pairs of Stature and Weight

• 1988 US Army Anthropometric Survey: 1773 males

S & W ~ bivariate normal distribution

$$(\chi_9^2 = 9.66, p = 0.379)$$

 $\mu_s = 175.6 \text{ cm} \quad \mu_W = 78.5 \text{ kg} \quad r_{s,W} = 0.5$
 $\sigma_s^2 = 6.7^2 \qquad \sigma_W^2 = 3.5^2$

(e.g.) 1000 pairs of S & W within 90% of accommodation range

Weight (10⁻¹kg)

Weight (10⁻¹kg)

Flat vs. Hierarchical Estimation Methods

Flat estimation

trochanterion height = f_1 (stature) upper leg length = f_2 (stature) knee height at midpatella = f_3 (stature) shank length = f_4 (stature) lateral malleneous height = f_5 (stature)

Hierarchical estimation

trochanterion height = g_1 (stature) upper leg length = g_2 (trochanterion height) knee height = g_3 (trochanterion height) shank length = g_4 (knee height) lateral malleneous height = g_5 (knee height)

Hierarchical Regression Models (examples)

S2: Estimation of Body Segment Sizes

- □ By using the sampling distribution of an individual observation for an anthropometric variable (*Y*) given a value of regressor(s) ($\mathbf{x} = \mathbf{x}_0$), establish a (1-*p*) prediction interval of $Y_{\mathbf{x} = \mathbf{x}_0}$.
 - \Box Select a value for *Y* in the prediction interval at random.

Generation of Human Models (example)

□ Human models of the same stature and weight with various proportions of body segments could be defined.

(e.g.) human models of S = 175.6 cm and W =78.5 kg, having different sizes of body segments

Development of a Human Model Generation System

Web-Based Human Model Generation System

Simple inputs

- ✓ Nationality
- ✓ Gender
- ✓ # human models
- ✓ Accommodation %
- Generating human models in a short time
- Easy access to body segment size information
- Visualizing human models
- Saving data in Excel file format for other applications

http://center.	postech.ac.kr	- ::: E-OPLDSS ::: H	luman model generation Mo	dule - Microsoft Interne	t Explorer 📃 🗖 🗗
Input the optional conditions of human model generation				Human mode	el generation module
Country	America 🗸	Gender	male 💌		
No. of models		(e,g,:100) Accommodatio	n % (e.g.:95%)		😤 Generate
Overall Head/	Neck Trunk	Arm/Hand Leg/Foot			
Body part	Dimension type	Variable	Predicted value		
Overall	Height	Stature Sitting height	0,0 0,0		
	Weight	Weight	U, U		
Country :	Generate :	Human model: /	Search : 🔶 🔶	model	Go 🔚 Save
<u>)</u> 완료					인터넷

Discussion

Developed a method which generates human models having

- Heights and weights within a designated accommodation range from the corresponding bivariate normal distribution
- Different proportions of the body segments for the same height and weight by using hierarchical regression models and the corresponding sampling distributions of individual observations
- Developed a web-based system which generates a group of human models which represents the population in terms of height and weight with simple inputs of nationality, gender, accommodation range, and # human models.
- The human model generation system can be of use for ergonomic design and evaluation with digital human models in various sizes to properly accommodate the designated level of the body size variability of the user population.

Q & A

